Algae Biofuel - A Realistic Alternative to Fossil Fuels

Discussion in 'Science and Nature' started by Ezy Ryder, Jan 29, 2011.

  1. #1 Ezy Ryder, Jan 29, 2011
    Last edited by a moderator: Jan 29, 2011
    Algae fuel - Wikipedia, the free encyclopedia


    Algae fuel is an alternative to fossil fuel and uses algae as its source of natural deposits. Several companies and government agencies are funding efforts to reduce capital and operating costs and make algae fuel production commercially viable. The production of biofuels from algae does not reduce atmospheric carbon dioxide (CO2), because any CO2 taken out of the atmosphere by the algae is returned when the biofuels are burned. They do however potentially reduce the introduction of new CO2 by displacing fossil hydrocarbon fuels.
    High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels, using land that is not suitable for agriculture. Among algal fuels' attractive characteristics: they do not affect fresh water resources, can be produced using ocean and wastewater, and are biodegradable and relatively harmless to the environment if spilled. Algae cost more per unit mass (as of 2010, food grade algae costs ~$5000/tonne), due to high capital and operating costs, yet can theoretically yield between 10 and 100 times more energy per unit area than other second-generation biofuel crops. One biofuels company has claimed that algae can produce more oil in an area the size of a two car garage than a football field of soybeans, because almost the entire algal organism can use sunlight to produce lipids, or oil. The United States Department of Energy estimates that if algae fuel replaced all the petroleum fuel in the United States, it would require 15,000 square miles (39,000 km2) which is only 0.42% of the U.S. map. This is less than 1⁄7 the area of corn harvested in the United States in 2000. However, these claims remain unrealized, commercially. Algae fuel can reach price parity with oil in 2017 if granted production tax credits, according to the head of the Algal Biomass Organization.

    Companies such as Sapphire Energy are using genetic engineering and chemically induced mutations to produce algae suitable for use as a crop.
    Some commercial interests into large scale algal-cultivation systems are looking to tie in to existing infrastructures, such as cement factories, coal power plants, or sewage treatment facilities. This approach changes wastes into resources to provide the raw materials, CO2 and nutrients, for the system.
    Aquaflow Bionomic Corporation of New Zealand announced that it has produced its first sample of homegrown bio-diesel fuel with algae sourced from local sewerage ponds. A small quantity of laboratory produced oil was mixed with 95% regular diesel.
    A feasibility study using marine microalgae in a photobioreactor is being done by The International Research Consortium on Continental Margins at the Jacobs University Bremen.
    The Department of Environmental Science at Ateneo de Manila University in the Philippines, is working on producing biofuel from a local species of algae.
    NBB’s Feedstock Development program is addressing production of algae on the horizon to expand available material for biodiesel in a sustainable manner.

    There is always uncertainty about the success of new products and investors have to consider carefully the proper energy sources in which to invest. A drop in fossil fuel oil prices might make consumers and therefore investors lose interest in renewable energy. Algal fuel companies are learning that investors have different expectations about returns and length of investments. AlgaePro Systems found in its talks with investors that while one wants at least 5 times the returns on their investment, others would only be willing to invest in a profitable operation over the long term. Every investor has its own unique stipulations that are obstacles to further algae fuel development. Additional concerns consider the potential environmental impact of Algal fuel development, as well as secondary impacts on wildlife such as bears and fish.[citation needed]
    Whereas technical problems, such as harvesting, are being addressed successfully by the industry, the high up-front investment of algae-to-biofuels facilities is seen by many as a major obstacle to the success of this technology. Only few studies on the economic viability are publicly available, and must often rely on the little data (often only engineering estimates) available in the public domain. Dmitrov examined the GreenFuels photobioreactor and estimated that algae oil would only be competitive at an oil price of $800 per barrel. A study by Alabi at al. examined raceways, photobioreactors and anaerobic fermenters to make biofuels from algae and found that photobioreactors are too expensive to make biofuels. Raceways might be cost-effective in warm climates with very low labor costs, and fermenters may become cost-effective subsequent to significant process improvements. The group found that capital cost, labor cost and operational costs (fertilizer, electricity, etc.) by themselves are too high for algae biofuels to be cost-competitive with conventional fuels. Similar results were found by others, suggesting that unless new, cheaper ways of harnessing algae for biofuels production are found, their great technical potential may never become economically accessible.

    [ame=http://www.youtube.com/watch?v=jPfYjOMNGX0]YouTube - Algae Biofuels and Biotech - Stephen Mayfield UC San Diego[/ame]

    [ame]http://www.youtube.com/watch?v=CB2XlpD-Ld4[/ame]
     
  2. great information.
     

Share This Page