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Salicylic acid (SA) is synthesised by plants in response to

challenge by a diverse range of phytopathogens and is

essential to the establishment of both local and systemic-

acquired resistance (SAR). SA application induces

accumulation of pathogenesis-related (PR) proteins. Mutations

leading to either reduced SA production or impaired SA

perception enhance susceptibility to avirulent and virulent

pathogens. However, our knowledge of the primary signalling

components activating SA biosynthesis and linking to PR

proteins accumulation is rudimentary. We review progress

towards characterising key players (NPR1, MPK4) and

processes (methylation, amino acid conjugation,

S-nitrosylation) contributing to SA-signalling and perception

pathways. Further, we examine emerging data on how

pathogens have evolved strategies (e.g. ABA modulation and

coronatine production) to suppress SA-mediated plant

defence.
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Introduction
The pharmacological properties of salicylate derivatives

from willow bark were for centuries prized by ancient

Greeks and American Indians, eventually leading to the

invention and marketing of aspirin (acetylsalicylic acid),

a mammalian cyclooxygenase inhibitor and the oldest,

most widely used drug in history [1]. Treatment of

plants with aspirin subsequently led to the demon-

stration that SA derivatives could induce both the

resistance and the accumulation of PR proteins [2].

SA accumulation has subsequently been associated with

a plethora of biotic and abiotic responses, but research is

predominately polarised towards its role in plant

defence responses and therefore this review primarily

focuses on recent literature relating to the role of SA in

biotic interactions.
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SA biosynthesis in defence
Plant resistance to biotrophic pathogens is classically

thought to be mediated through SA signalling. By contrast

resistance to nectrotrophic resistance is controlled by

jasmonic acid (JA), ethylene (ET)-signalling pathways

and genetically, SA and JA/ET defence pathways interact

antagonistically (reviewed in references [3,4]).

Pathogen-derived SA is synthesised from chorismate by

isochorismate synthase (ICS1). Chorismate itself is derived

from the shikimate pathway whose components are

strongly transcriptionally upregulated following pathogen

challenge [5]. Recombinant ICS1 binds chorismate with

high affinity, is active over a range of physiological

parameters and is imported and immunolocalised to chlor-

oplast stroma [6�]. The low Km of ICS1 would facilitate

substrate competition in other chorismate-utilising

enzymes; however, further biochemical characterisation

of ICS1 and the related ICS2 is necessary to reveal their

respective roles in stress and developmental responses.

Bioactive SA conjugates
Modification of hormones by glucoslyation, methylation

and amino acid conjugation are increasingly being recog-

nised as integral to spatial and temporal control of plant

regulatory processes. Most pathogen-induced SA is glu-

cosylated by UDP-glucosyltransferase (UGT) to form

non-toxic SA 2-O-b-D-glucoside (SAG) that is seques-

tered in vacuoles where it presumably forms a readily

available hydrolysable source of SA [7]. However, recent

advances suggest other SA modifications provide bio-

logical specificity in plant defence responses.

Methylation

Methyl salicylate (MeSA), a volatile ester, is normally

absent in plants but is dramatically induced upon

pathogen infection [8,9].

MeSA is synthesised by SA carboxyl methyltransferase

(SAMT), a member of the SABATH methyltransferase

family, using the methyl donor S-adenosyl-l-Met and

carboxylic acid containing substrates [10,11]. Arabidopsis

plants overexpressing Oryza sativa OsBSMT1 accumulated

MeSA and MeBA (methyl benzoic acid) [12�]. Infection of

OsBSMT1 overexpressors with the fungal pathogen Golo-
vinomyces orontii, or Pseudomonas syringae resulted in

increased susceptibility and reduced accumulation of

SA, the inactive SA glycoside (SAG) and PR1 compared

with wild-type plants [12�]. Strikingly, OsBSMT1 over-

expressors triggered PR1 induction in neighbouring

wild-type plants, which was not dependent upon ICS1-

derived SA but was dependent upon non-expressor of PR1
www.sciencedirect.com
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(NPR1) a central positive regulator of systemic defence

[12�,13]. Although an alternative route of SA production is

conceivable, data suggest MeSA alone is ineffective in

inducing a defence response but can function as a volatile

signalling molecule.

In tobacco, conversion of MeSA to SA appears to be

catalysed by the high SA affinity cytosolic SA methyl

esterase SABP2 (salicylic acid binding protein 2; [14]),

SABP2-silenced tobacco plants had attenuated local resist-

ance to tobacco mosaic virus (TMV), reduced PR1 expres-

sion and were compromised in SAR [15��]. MeSA increases

in both primary infected and systemic tissue following

TMV inoculation, which is attenuated by overexpressing

a mutant SABP2 with unregulated MeSA esterase activity

in the primary infected tissue. Moreover, grafted tobacco

plants silenced for SABP2 in scions but not rootstocks show

attenuated SAR, suggesting that MeSA is required for SAR

(D. Klessig per. com). Collectively, these data implicate

MeSA as a mobile or volatile inducer of SAR.

By contrast, recent studies implicate lipid signals such as

JA-derived molecules are required for SAR [16,17��], and

a putative lipid transfer protein is required in challenged

tissue to initiate a mobile signal [18]. Previously the

observation that JA-induced AtBSMT1 provided a

mechanistic explanation for how JA pathways may

antagonise SA pathways by depleting the SA pool in

plants [10]. However, it is equally conceivable that both

SA and JA derivatives corroborate in temporally and

spatially distinct modes of action to activate SAR. Owing

to the inherent complexity of biotic signalling networks,

detailed time-resolved studies are imperative to advance

our understanding of the dynamics of host pathogen

interactions leading to SAR.

Amino acid conjugation

SA amino acid conjugates are emerging as bioactive

inducers of defence responses. The jasmonate-resistant

protein JAR1 is a member of the auxin-induced soybean

GH3 acyl adenylate/thioesterase family and catalyses JA

conjugation to isoleucine [19]. Functional analyses of this

19-member family in Arabidopsis identified At4g27260,

which adenylates SA in vitro [19]. Recently, Arabidopsis

PBS3 (avrPphB susceptible) was identified as a likely

GH3 family phytohormone–amino acid synthase [20�].
pbs3 plants exhibit enhanced susceptibility to both viru-

lent and avirulent pathogens, attenuated expression of

PR1 and pathogen-induced accumulation of SAG, yet

accumulated twofold the SA levels of wild-type plants

following challenge with P. syringae expressing avrRpt2.

These data imply elevated SA is not sufficient to activate

PR1, or a threshold level of total SA (free SA and SAG) is

necessary to activate PR1 expression. Nobuta et al. specu-

late that an SA-aa may be exported to adjacent cells and

subsequently hydrolysed to free SA that activates defence

responses. Alternatively, the SA-aa conjugate may be
www.sciencedirect.com
targeted for the degradation pathways [20�]. Ubiquitin-

mediated degradation of negative regulators of hormone-

signalling pathways appears fundamental to hormonal

control (reviewed in reference [21]). Indeed, mutations

in the small ubiquitin modifier E3 ligase, SIZ1, regulate

SA-mediated innate immunity [22].

Have pathogens evolved to suppress SA
signalling?
Plant responses to different environmental stresses are

achieved through integrating shared signalling networks

and mediated by the synergistic or antagonistic inter-

actions with the phytohormones SA, JA, ET, abscisic acid

(ABA) and reactive oxygen species (ROS). How particular

stresses are decoded and translated to provide the output

specificity remains largely unknown; it is likely both

temporal and spatial hormonal balances contribute sig-

nificantly [23]. As hormone-based defences enable rapid

global activation of a broad spectrum of physiological

responses it is unsurprising pathogens have evolved

multiple strategies to suppress SA-based plant defences.

JA/SA antagonism

Genetic evidence for JA antagonism of SA-signalling

pathways has been well documented using jasmonate-

signalling mutants [4], but emerging data suggest a more

complex signalling network evoking both positive and

negative regulatory interactions. Simultaneous appli-

cation of SA and JA at low concentration results in

synergistic expression of PR1 and classical JA defence

markers. By contrast, higher phytohormone concen-

trations are antagonistic and induce apoplastic reactive

oxygen production and cell death [24]. Similarly, JA or a

derivative thereof is necessary for full development of

SAR [17��]. It is notable that SA and allene oxide synthase

(AOS; the first committed enzymatic step in JA biosyn-

thesis) share a chloroplastic location for synthesis and

activity, respectively. SA has been reported to either

activate [25] or inhibit [26] AOS activity. SA levels in

the chloroplast are likely to be substantially higher than

those measured in total leaf, and are therefore potentially

capable of mediating local JA antagonism by inhibition of

AOS. These conflicting reports may simply reflect differ-

ent adaptations in different plants but highlight the lack

of temporal and spatial knowledge of these pathway

components during defence responses.

The production of the P. syringae phytotoxin coronatine

(COR), a jasmonoyl-isoleucine (JA-Ile) mimic, by the

conjugation of coronafacic acid (CFA) to coronamic acid

(CMA) by coronafacic ligase [27] provides a compelling

example of how a pathogen has exploited negative inter-

actions to suppress plant defences. COR is believed to

activate or modulate JA signalling to suppress SA

defences [28�], and consistent with these data mutants

impaired in jasmonate signalling exhibit enhanced resist-

ance to P. syringae original [28�,29]. Strikingly, the bac-
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terial necrotroph Erwinia caratovora also appears to have

horizontally acquired a pathogenicity island containing

genes for CFA (but not CMA) synthesis [30]. CFA may be

coupled to a variety of amino acids, providing another

potential strategy for modulating host defence responses.

Bacterial effectors appear to utilise similar signalling

networks to promote disease. Enhanced growth of a

severely compromised P. syringae hrp mutant by con-

ditional expression of the bacterial effector AvrB, in

the absence of its cognate R protein, RPM1, requires

COI1 (coronatine insensitive 1; a key component of JA-

signalling pathways). These data suggest effector-

mediated enhanced disease susceptibility can interfere

with SA defence through JA pathways [31].

It has recently been demonstrated that JA responses are

regulated through the F-box COI1 SCF (Skip/Cullin/F

box) E3 ubiquitin ligase complex. Analogous to auxin

signalling through SCFTIR1 and AUX/IAA repressors,

rapidly induced JAZ (jasmonate ZIM-domain) transcripts

encode repressors of the SCFCOI1 E3 ubiquitin ligase

complex. JAZ proteins are proteasome degraded follow-

ing jasmonate treatment, and at least one JAZ protein

negatively regulates a key transcriptional activator of

jasmonate responses, MYC2 [32��,33��]. It will therefore

be intriguing to determine whether SA responses are

regulated in a similar manner. SA antagonism of JA

signalling could be achieved by blocking JA-mediated

degradation of JAZ proteins. Alternatively sharing of, or

interference with, SCF E3 ligase components and associ-

ated adaptors may well explain the strong impact hormo-

nal balances play in influencing the outcome of plant–

pathogen interactions [23]. These data suggest that cor-

onatine-mediated virulence and antagonism of SA signal-

ling is most likely achieved through promoting SCFCOI1-

mediated degradation of JAZ repressors.

SA/ABA antagonism

ABA has recently emerged as a key determinant in the

outcome of plant pathogen interactions [34]. Exogenous

application of ABA-attenuated expression of Arabidopsis

genes associated with aromatic amino acid biosynthesis

and restricted lignin and SA accumulation during the

incompatible interaction between P. syringae expressing

avrRpt2 [35�]. More remarkably, bacterial T3Es hijacked

ABA biosynthesis to promote virulence. Ectopic expres-

sion of the effector, AvrPtoB, mimicked ABA induction

and suppression of defence genes [36��]. We have since

shown that ABA produced by virulent P. syringae sup-

presses SA accumulation. SA levels are enhanced in an

ABA biosynthetic mutant, suggesting the earlier T3E-

modulated ABA accumulation suppresses SA levels (de

Torres & Grant, unpublished). As ABA is also emerging

as central in resistance to JA defence pathways [37,38] the

mechanistic basis for cross-talk between this triad of stress

phytohormones represents a significant future challenge.
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Antagonism of SA signalling via S-nitrosylation

Nitric oxide (NO) is a key redox-signalling molecule in

plants. In the plant defence response NO is thought to

regulate both gene expression and hypersensitive cell

death [39]. Like in animals, S-nitrosylation is emerging

as a prototypic redox-based post-translational modifi-

cation that underpins NO signal function during many

plant cellular responses [40]. This post-translational

modification entails the addition of an NO moiety to a

reactive cysteine thiol to form an S-nitrosothiol (SNO).

Recently, S-nitrosoglutathione reductase (GSNOR), cen-

tral to endogenous SNO turnover has been identified in

bacteria [41] and plants [42��]. Loss-of-function

mutations in Arabidopsis thaliana GSNOR (AtGSNOR1)

resulted in increased cellular levels of SNOs, while a

gain-of-function mutation, which resulted in enhanced

AtGSNOR1 activity, decreased endogenous SNO levels

[42��]. Importantly, loss of AtGSNOR1 function comprom-

ised non-host resistance against the wheat powdery mil-

dew pathogen, Blumeria graminis f.sp tritici. Furthermore,

the absence of AtGSNOR activity also compromised

protection mediated by distinct R gene subclasses and

basal resistance [42��]. Conversely, overexpression of

AtGSNOR1 resulted in strikingly enhanced basal resist-

ance against a broad spectrum of pathogens. Thus, AtGS-

NOR1 is required for multiple modes of plant disease

resistance. This enzyme regulates both SA biosynthesis

and SA signalling, suggesting that at least two nodes of

the SA-signalling network may be controlled by S-nitro-

sylation.

NPR1 is a potential target for S-nitrosylation. NPR1 is

normally present in the cytoplasm and shuttles to the

nucleus in response to changes in cellular redox tone

during the establishment of disease resistance. NPR1

cytoplasm-to-nucleus shuttling is controlled by the pre-

sence of a number of redox responsive cysteines, which

could potentially be targets for S-nitrosylation. In an

unbiased biochemical screen for proteins that become

specifically S-nitrosylated during the plant defence

response Loake and co-workers have demonstrated that

SA-Binding Protein 3 [43] is S-nitrosylated on a single

reactive cysteine (Wang, Loake et al. unpublished). S-

nitrosylation of SABP3 has been shown to modulate SA

binding, and also the cognate carbonic anhydrase activity

of this protein, which has been implicated in disease

resistance [44].

SA signalling
Significant progress has been made towards linking SA

signalling and defence responses. Plants activate basal

defences following perception of PAMPs. In Arabidopsis,

recognition of the archetypal PAMP, bacterial flagellin

activates a mitogen-activated protein kinase (MAPK)

module leading to expression of basal defence-related

genes [45]. The mitogen-activated protein kinase kinase

kinase MEKK1 has recently been shown to be required for
www.sciencedirect.com
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flg22-induced activation of MPK4 but in contrast to a

previous report [45] not MPK3 or MPK6 [46�,47�]. MAPK4

acts as a negative regulator of SA signalling but is required

for induction of JA defence markers, suggesting it

represents a key node mediating antagonism between

SA/JA signalling [48]. Similar to other mutants with con-

stitutive activation of SA-dependent defences, both mpk4
and mekk1 mutants are severely dwarfed. mekk1 dwarfism

can be alleviated by expression of nahG indicating MEKK1

is required for suppression of SA signalling, in agreement

with its proposed upstream signalling role in flg22-induced

activation of MPK4 [47�]. Additionally, MPK4 negatively

regulates temperature-sensitive cell death and cell-specific

cell death [46�] highlighting the global role of SA in plant

stress responses. Intriguingly, a kinase-impaired version of

MEKK1 (K361M) also restored wild-type phenotype and

flg22-induced activation of MPK4 [47�] indicative of a

scaffolding, rather than direct, signalling function for

MEKK1. This is consistent with the MEKK1 N-terminal

regulatory domain interaction with MPK4, and MEKK1’s

interaction with MKK1 [49] the most likely MAPKK

candidate for a MEKK1/MPK4 complex. MKK1 can phos-

phorylate MPK4 in vitro, and following flg22 treatment of

protoplasts MKK1 activates MPK4 [50�]. Moreover, mkk1
mutants are compromised in both flg22 activation of MPK4

(and MPK3 and MPK6) and resistance to virulent and

avirulent P. syringae. Notably, unlike mpk4 and mekk1, mkk1
mutants show no morphological anomalies [50�].

Downstream targets of MAPK4 have recently been

revealed. The MAPK4 substrate MKS1 interacts, in a

JA-independent manner, with two WRKY transcription

factors, WRKY 25 and WRKY 33, which are both in vitro
substrates of MAPK4 [51��]. A knockout of WRKY 33

results in elevated PR1 expression indicative of a link

between SA-mediated MAPK4 signalling. Consistent with

these data an independent study showed WRKY25 was a

negative regulator of SA-mediated defence responses to P.
syringae [52]. Unexpectedly, genetic dissection of MAPK4

signalling revealed PAD4/EDS1 ( phytoalexin deficient4/
enhanced disease susceptible1) mutations also act downstream

of MAPK4. PAD4 and EDS1 are proposed to alleviate JA/

ET antagonism and partially abrogate dwarfism through

activating SA and repressing JA/ET defences [53,54�].
Significantly, these data suggest overlapping, or indepen-

dent roles for MEKK1 and MAPK4 in SA-mediated signal-

ling and link, for the first time, PAD4/EDS1, central

mediators of SA/JA signalling to a kinase cascade.

Transcription factors participating in SA
signalling
SA signalling is mediated by both NPR1-dependent

mechanisms and NPR1-independent mechanisms [3],

though the former pathway is better understood. SA-

induced redox changes lead to the reduction of NPR1

from cytosolic, disulfide-bound oligomers to active mono-

mers. NPR1 monomers nuclear localise and interact with
www.sciencedirect.com
the TGA class of basic leucine zipper transcription factors

leading to the expression of a plethora of SA-dependent

genes [55��]. The actual recruitment of NPR1 and TGA2

to the PR1 promoter, however, is autonomous and inde-

pendent of SA [56]. Rather SA application stimulates the

formation of a TGA2/NPR1 transactivating complex

capable of inducing expression from both heterologous

and PR1 promoters. The TGA2 coactivator function of

NPR1 is mediated by its BTB/POZ protein interaction

domain and requires further Cys-oxidation of NPR1 [56],

consistent with the observation that overexpression of

NPR1 alone does not activate PR1 expression. SA also

induces the NPR1-dependent glutaredoxin GRX480,

which interacts with TGA2 and probably catalyses thiol

disulfide reductions that mediate alteration of TGA1-

NPR1 redox states under inducing conditions [57�].

Emerging evidence suggests that WRKY transcription

factors participate extensively in SA defence responses,

downstream or concomitant with NPR1, both as activa-

tors and repressors of SA transcription [55��]. The com-

binatorial interactions of WRKY homodimers and

heterodimers in modulating SA-mediated defence

responses are extremely complex and are covered in a

recent review [58].

Conclusions
Progress has been made in identifying key components

and bioactive derivatives of SA-signalling pathways.

Effector-mediated suppression of SA defences are now

well established, however understanding the mechanism

by which these diverse effectors link to, and perturb SA

signalling remains a significant challenge. There is a real

need to move beyond end-point analyses such as the

measurements of PR1 and PDF1.2 and their carte blanc
attribution to SA and JA-dependent responses, respect-

ively. SA signalling must be considered within the con-

text of the local phytohormone balance and recognise

temporally and spatially distinct (pathogen specific)

phases associated with establishing defence against bio-

trophs. Revealing the inherent complexity of the SA

defence signalling network requires resolving the

dynamics of host pathogen interactions through detailed

time-delimited analyses of infection, and infection com-

promised mutants, at all functional genomic scales. This

includes recognising the contribution of volatile and

conjugated SA derivatives as signalling molecules.

Maybe we are, after all, being too naive in trying to

contain research under the umbrella of SA-dependent

defence signalling.
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